Promocje
Produkty w promocyjnych cenach, wszystkie
Chronos Magazyn 4-5/2023 (e-wydanie)
Chronos Katalog edycja 2019 (e-wydanie)
Chronos Magazyn 4-5/2022 (e-wydanie)
Chronos Katalog edycja 2021 (e-wydanie)
Chronos Katalog kolekcja 2020 - 2022
Film&TV Kamera pakiet 2020
Portal Dziecko w Warszawie - banner 1140x150
Portal Dziecko w Warszawie - Konkurs sponsorowany
Chronos Magazyn 2/2022
Portal Dziecko w Warszawie - banner 755x150
Chronos Katalog kolekcja 2020 - 2021
Chronos Magazyn 2/2023 (e-wydanie)
Portal Dziecko w Warszawie - banner 370x200
Film&TV Kamera pakiet 2021
Chronos Katalog edycja 2021
Biblioteka przedsiębiorczych: Wnętrze sklepu (e-wydanie)
Chronos Magazyn 2/2024 (e-wydanie)
Chronos Katalog edycja 2023 (z naklejką)
Biblioteka przedsiębiorczych: Vademecum sprzedawcy (e-wydanie)
Chronos Magazyn 1/2024 (e-wydanie)
Chronos Katalog edycja 2020
Chronos prenumerata (e-wydania)
Chronos Katalog edycja 2018
Portal Dziecko w Warszawie - Artykuł sponsorowany + post FB
Chronos Katalog edycja 2023 (e-wydanie)
Chronos Katalog edycja 2024 (e-wydanie)
Portal Dziecko w Warszawie - Artykuł sponsorowany
Chronos Katalog edycja 2022 (e-wydanie)
Chronos Magazyn 1/2023 (e-wydanie)
Portal Dziecko w Warszawie - banner 980x150
Wyniki wyszukiwania
Kody źródłowe JAVA: Metody numeryczne - Współczynnik wielomianu aproksymacyjnego
Zawartość pakietu:
- Archiwum ZIP: Zawiera projekt Netbeans i plik JAR.
- Kody źródłowe: Projekt Netbeans z kodem gotowym do modyfikacji.
- Executable JAR: Uruchomienie programu w celu szybkiego przetestowania funkcjonalności.
Specyfikacja kodu źródłowego:
- Edytowalność: Kod źródłowy jest dostosowany do szybkich zmian i personalizacji.
- Rozszerzalność: Kod jest konfigurowalny i może być zintegrowany z innymi projektami.
Instrukcja uruchomienia:
- Wymagania: Upewnij się, że Java Runtime Environment (JRE) jest zainstalowana.
- Uruchomienie: Użyj pliku
run.bat
w głównym katalogu programu dla Windows lub wykonajjava -jar nazwa_programu.jar
w terminalu. - Wsparcie: W przypadku trudności, zapoznaj się z dołączoną instrukcją w sekcji "Jak uruchomić program?".
Założenia programu:
Wprowadź dane, a następnie naciśnij przycisk
W przedziale [a,b]
zadana jest funkcja dyskretna dla (n+1)
równoodległych wartości argumentu (w węzłach), gdzie n
może przyjmować wartości n = 8
, ..., 25
. Znaleźć wielomian aproksymacyjny ustalonego stopnia s
(gdzie s = 1
, ..., 6
). Obliczyć dla zadanego n
i ustalonego s
:
- Współczynniki wielomianu aproksymacyjnego,
- Błędy aproksymacji w węzłach,
- Sumę kwadratów odchyleń aproksymacji w węzłach,
- Maksymalne, co do modułu, błędy bezwzględne i względne w węzłach,
- Średni błąd bezwzględny i względny w węzłach,
- Wartości aproksymujące dla kilku dowolnie wybranych
x
z przedziału[a,b]
, - Wartości ekstrapolujące dla dowolnie wybranych
x
z przedziału[a-h,a)
i z przedziału(b,b+h]
, gdzieh=(b-a)
.
Kody źródłowe JAVA: Metody numeryczne - Wyznaczanie wielomianu aproksymującego 2. stopnia drugiego dla funkcji dyskretnej
Zawartość pakietu:
- Archiwum ZIP: Zawiera projekt Netbeans i plik JAR.
- Kody źródłowe: Projekt Netbeans z kodem gotowym do modyfikacji.
- Executable JAR: Uruchomienie programu w celu szybkiego przetestowania funkcjonalności.
Specyfikacja kodu źródłowego:
- Edytowalność: Kod źródłowy jest dostosowany do szybkich zmian i personalizacji.
- Rozszerzalność: Kod jest konfigurowalny i może być zintegrowany z innymi projektami.
Instrukcja uruchomienia:
- Wymagania: Upewnij się, że Java Runtime Environment (JRE) jest zainstalowana.
- Uruchomienie: Użyj pliku
run.bat
w głównym katalogu programu dla Windows lub wykonajjava -jar nazwa_programu.jar
w terminalu. - Wsparcie: W przypadku trudności, zapoznaj się z dołączoną instrukcją w sekcji "Jak uruchomić program?".
Założenia programu:
Wprowadź dane, a następnie naciśnij przycisk
Wyznaczanie wielomianu aproksymującego co najwyżej stopnia drugiego dla funkcji dyskretnej
Program ma za zadanie wyznaczyć wielomian aproksymujący co najwyżej drugiego stopnia dla podanej funkcji dyskretnej. Dodatkowo, program oblicza błąd aproksymacji oraz ilustruje wynik graficznie.
Dane Przykładowe:
1 -9.0 11.5
2 -2.0 8.6
3 -1.0 10.8
4 1.0 10.5
5 5.0 9.0
6 6.0 9.8
7 10.0 10.2
8 12.0 10.3
9 15.0 12.3
10 16.0 12.4
11 17.0 12.4
12 18.0 10.5
13 19.0 10.4
Wynik Aproksymacji:
Wielomian aproksymujący: 10.268110173539247 + x * 0.048734277981213096
Na podstawie powyższych danych program wyznaczył wielomian aproksymujący funkcję dyskretną. W celu obliczenia błędu aproksymacji, program porównuje wartości funkcji dyskretnej z wartościami wyznaczonymi przez wielomian w odpowiadających im punktach. Graficzne przedstawienie wyników pozwala na łatwą weryfikację dokładności aproksymacji.